
Cadmium-induced Oxidative Cellular Damage in Human Fetal Lung
Fibroblasts (MRC-5 Cells)
Cheng-Feng Yang,1 Han-Ming Shen,2 Yi Shen,2 Zhi-Xiong Zhuang,3 and Choon-Nam Ong2
1School of Public Health, Tongji Medical University, Wuhan, Peoples Republic of China; 2Department of Community, Occupational, and
Family Medicine, National University of Singapore, Singapore; and 3School of Public Health, Sun Yet-Sen University of Medical
Sciences, Guangzhou, Peoples Republic of China.

Epidemiological evidence suggests that cadmium (Cd) exposure causes pulmony damage such
as emphysema and lung cancer. However, relatively little is known about the mechanisms
involved in Cd at In the presnt stud,. the effects of Cd sure on human
fiea lung fibroblat (MRC-5 cells) were vluated by d ntion oflipd o i -
celular prducon of reactive oygn species (ROS),a-d changes of mithdial mem e
potential. A time- and dos-dependent increase of both lactte dehydogenase leaka and mal-
ondialdehyde formation was observed in Cd-treated cells. A close corrladtion between these two
events sugget that lipid p idao may be one of the main pathways otoxicty
It was also noted that Cd-induced cell-injury and lipid ton we inbited by lae
and superoxide dismutase, two antioidant en s.By using e probe 2',7'-
dichlorofluo dicetae, asi increase of ROS: proucon i C reted MRC-5 cs
was detected. The inihibition ofdihlorofluorescein flurec e by ca not superosid is-
mutase, sugges t hydrog peroxide is the main ROS involved Moreover, the sigificant
dose-dependent changes of mitochondrial membrane potential in Cd-treated MRC-5 cells,
demonsratted by n rhodaminef 23l examined us a e-scanning-
focal micsope, also indicate the involvement ofm d e i Cd c
These findings p in vitr dence that Cd m in human fl
lung fibroblasts, which may be osely td with
cadmium, cytotoxicity, lipid proxidation, mitochondrial membrane potentil, MRC-5 cells,
ROS. Envion Hadth Perspect 105:712-716 (1997)

Cadmium (Cd), one of the common toxic
heavy metals, is widely used in modern
industry. Due to its extensive use and long
biological half-life, the potential health
effects of Cd to humans have attracted
much attention over the years. Extensive
studies have been carried out, and it is gen-
erally acknowledged that Cd exposure causes
renal, skeletal, vascular, and respiratory dis-
orders in humans (1). Based on evidence
from both experimental and epidemiological
investigations, the International Agency for
Research on Cancer (IARC) has classified
Cd as a Group 1 carcinogen in humans (2).

The lung is one of the main target
organs for Cd toxicity, and several studies
have shown that emphysema is one of the
primary consequences resulting from Cd
exposure (3,4), suggesting the possible
involvement of lung fibroblasts in Cd pul-
monary toxicity. However, studies on the
toxic effects of Cd on lung fibroblasts are
relatively rare compared to other target
cells. Chambers et al. (5) demonstrated that
Cd selectively inhibits procollagen produc-
tion and proliferation of rat fetal fibroblasts,
the cell type implicated in the pathogenesis
of emphysema. Therefore, further studies
on the adverse effects of Cd on lung fibrob-
lasts may help to gain a better understand-
ing of the mechanism involved in the pul-
monary toxicity of Cd.

Although a number of studies have
suggested that oxidative damage is involved
in Cd-induced cytotoxicity, genotoxicity,
and carcinogenicity, the exact mechanisms
have not been fully elucidated. It has been
shown that Cd is able to induce lipid per-
oxidation, one of the main manifestations
of oxidative damage, under both in vivo
and in vitro conditions (6-10). For
instance, treatment of rats with a single
dose of CdCI2 increased the level of lipid
peroxidation, iron content, and cellular
production of reactive oxygen species
(ROS), as well as DNA strand breakage in
testicular Leydig cells, one of the target
cells for Cd carcinogenesis (8,9). It has
been proposed that Cd may initiate oxida-
tive damage through the following two
pathways: 1) depleting antioxidants such as
glutathione and protein-bound sulfhydryl
groups and 2) enhancing production of
ROS (11).

On the other hand, there is growing
evidence implicating mitochondria as
important subcellular targets in xenobiotic-
induced cell injury, particularly in oxidative
cellular damage (12,13). The functional
changes of mitochondria are usually mani-
fested by the loss of mitochondrial mem-
brane potential (MMP), which can be
assessed using a fluorescent cationic dye, as
the diffusion of the dye is proportional to

the degree of MMP (14). At present, no
reports are available showing the MMP
changes in Cd-treated cells or tissues.

The primary objective of the present
study was to evaluate Cd-induced oxidative
cellular damage in a human fetal lung
fibroblast cell line (MRC-5 cells) by study-
ing Cd-induced lipid peroxidation, ROS
production, and MMP changes. In addi-
tion, the effects of antioxidant enzymes
such as catalase and superoxide dismutase
on Cd-induced lipid peroxidation and ROS
production in MRC-5 cells were also inves-
tigated. Results from the present study pro-
vide a better understanding on the mecha-
nisms of Cd-induced pulmonary toxicity.

Materials and Methods
Cels and chemicals. The human fetal lung
fibroblast cell line (MRC-5 cells) was from
American Type Culture Collection (ATCC;
Rockville, MD). Cadmium chloride
(CdCl2) and thiobarbituric acid (TBA)
were purchased from Merck (Darmstadt,
Germany); minimum essential medium
(MEM) was from Gibco (Buffalo, NY); and
fetal bovine serum (FBS) was from
Cytosystems (Castle Hill, Australia).
Rhodamine 123 (Rh-123), sodium dodecyl
sulphate (SDS), penicillin, streptomycin,
catalase (CAT), and superoxide dismutase
(SOD) were from Sigma Chemical Co. (St.
Louis, MO). 2',7',-Dichlorofluorescin
diacetate (DCFH-DA) was purchased from
Molecular Probes, Eugene, OR.

Cell culture and treatments. MRC-5
cells were cultured in complete MEM (10%
FBS, 100 units/ml penicillin, 100 mg/ml
streptomycin, pH 7.4) at 37°C in 95% 02
and 5% CO2. Cells in logarithmic growth
phases (approximately 90% confluence)
were used for various experiments.

In the dose-response study, various
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concentrations of CdCI2 dissolved in FBS-
free MEM were incubated with MRC-5
cells for 16 hr. In the time-course study,
cells were treated with 35 pM CdCl2 up to
20 hr. The inhibitory effects of CAT (1000
U/ml) and SOD (500 U/ml) on Cd-
induced cell damage were tested after they
were cultured together with 35 pM CdCl2
for 16 hr.

Determination oflactate dehydrogenase
leakage. Lactate dehydrogenase (LDH)
activity was determined using an Abbott
VP Biochemical Analyzer with the test kit
(Abbott Laboratories, Chicago, IL), as
described by Shen et al. (15). At the end of
the experiment, an aliquot of medium (0.2
ml) was taken out for measuring extracellu-
lar LDH activity. The total LDH activity
was determined after cells were disrupted
thoroughly using sonication. The percent-
age of LDH leakage was then calculated to
reflect the cytotoxicity of CdCl2.

Measurement of lipid peroxidation.
Malondialdehyde (MDA), an end product
of lipid peroxidation, was measured to esti-
mate the extent of lipid peroxidation in
MRC-5 cells. MDA concentration in cell
homogenate was determined using a TBA
method as described by Uchiyama and
Mihara (16), with modifications. Briefly, at
the end of the experiment, cells were col-
lected using a cell scraper and washed with
PBS. Cell homogenate (0.5 ml in PBS with
1% SDS) was mixed with 3 ml 1% phos-
phoric acid and 1 ml 0.67% TBA and
heated in boiling water for 60 min. After
cooling, 1.5 ml n-butanol was added. After
centrifugation, the absorbance of the
butanol phase was read at 535 nm and 520
nm. The difference between 535 nm and
520 nm was used to calculate the MDA
concentration, which was expressed as
nanomoles per milligram protein.

Detection ofROSformation and effects
ofantioxidant enzymes. Cd-induced ROS
formation in MRC-5 cells was detected by
using a fluorescent probe, 2',7'-diclorofluo-
rescin diacetate (DCFH-DA), as described
by Shen et al. (17). DCFH-DA diffuses
through the cell membrane readily and is
enzymatically hydrolyzed by intracellular
esterases to nonfluorescent diclorofluorescin
(DCFH), which is then rapidly oxidized to
highly fluorescent diclorofluorescein (DCF)
in the presence of ROS. The DCF fluores-
cence intensity is believed to be parallel to
the amount of ROS formed intracellularly
(18). The stock DCFH-DA (2 mM) was
prepared in absolute ethanol and kept at
-70'C in the dark. Cells collected from cul-
ture flasks using a cell scraper were washed
twice with PBS prior to the analysis. Each
fluorescence cuvette contained 0.6 x 105
cells in 3 ml PBS. CdCl2 was added to the

cells simultaneously with DCFH-DA (final
concentration 2 FM) and incubated at 37°C
up to 4 hr. The fluorescence intensity was
monitored using a Perkin-Elmer spectrofluo-
rometer LS-5B (Perkin Elmer, Beaconsfield,
U.K.) with excitation wavelength at 485 nm
and emission wavelength at 530 nm.

The inhibitory effects of CAT (1,000
U/ml) and SOD (500 U/ml) on ROS pro-
duction were evaluated by the following
approach: both enzymes were first pre-
incubated with MRC-5 cells in culture
flasks for 6 hr; cells were then collected and
washed with PBS for the fluorescence test
as described above.

Determination of mitochondrial mem-
brane potentiaL MMP in intact MRC-5
cells was determined using Rh-123, a fluo-
rescent dye. Mitochondria are stained by
Rh-123 because of the high negative electri-
cal potential across the mitochondrial mem-
brane, and the diffusion of Rh-123 is direct-
ly proportional to the degree ofMMP (14).
MRC-5 cells were cultured in MEM in cov-
erglass chambers. Before analysis, the cul-
tured cells were washed once with HEPES-
containing Hanks' balanced salt buffer
(HBSS; 1.26 mM CaCl2, 5.36 mM KCl,
0.44 mM KH2PO4, 0.49 mM MgCl2 6H20,
0.41 mM MgSO47H2O, 0.137 M NaCl,
0.34 mM Na2HPO4 7H20, 20 mM
HEPES). Cells were then incubated with
different concentrations of CdCl2 (0, 8.75,
17.5, and 35 pM) for 1 hr, followed by
incubation with 6 pg/inl Rh-123 for 30
min. After the removal of CdCl2 and Rh-
123 with HBSS, cells were evaluated imme-
diately using a laser-scanning inverted con-
focal microscope (Carl Zeiss LSM 410,
Jena, Germany). Rh-123 was excited using
488 nm laser line with a laser power of
10%. The emission signal was observed
with a combination of a 510 nm dichroic
mirror and a 515-516 nm cut-off filter. A
heat platform was fitted to the microscope
and set at 37°C throughout the analysis.
The quantification of the Rh-123 fluores-
cence intensity in different groups was per-
formed.

Statistical analysis. Data are presented as
mean ± standard deviation (SD) and ana-
lyzed using one-way analysis of variance
(ANOVA) with Scheffe's test or Student's t-
test. A p-value of <0.05 was considered sta-
tistically significant.

Results
Cd-induced cytotoxicity in MRC-5 cells.
The dose-dependent increase of LDH leak-
age in Cd-treated MRC-5 cells is shown in
Figure IA. It was found, with incubation for
16 hr, that the lowest concentration of
CdCl2 able to cause a significant change of
LDH leakage was 8.75 pM. Based on this
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Figure 1. Cd-induced lactate dehydrogenase (LDH)
leakage in cultured MRC-5 cells as shown by (A)
dose response and (B) time-course. Data are
expressed as mean ± standard deviation (n = 5-6).
In the dose-response study, cells were incubated
with CdCI2 for 16 hr. In'the time-course study, the
exposure concentration of CdCl was 35 pM.
*p<0.05 compared to zero CcC12 concentration
(ANOVA with Scheffe's test).
**p<0.01 compared to their respective control
groups (Student's t-test).

dose-response relationship, the median
lethal concentration (LC50) of UCdC2 was
calculated to be 40 pM. In the time-course
study, MRC-5 cells were cultured with
UCdC2 (35 pM) up to 20 hr; the results are
presented in Figure 1 B. In the Cd-treated
group, a significant increase ofLDH activity
in the medium was observed at 12 hr; with
20 hr of incubation, the percentage ofLDH
leakage in Cd-treated cells reached about
75%. On the other hand, LDH leakage in
the control cells remained at a constantly
low level within the entire incubation.

Cd-induced lipid peroxidation in
MRC-5 cells. A clear dose-dependent
increase of MDA concentration in Cd-
treated MRC-5 cells is shown in Figure 2A.
Similar to the dose response of LDH leak-
age, a significant increase in MDA concen-
tration was observed with the lowest Cd
dose (8.75 pM). Figure 2B shows the time-
course changes in MDA concentration in
Cd-treated MRC-5 cells. A significant
increase in MDA concentration occurred at
12 hr after treatment, reaching the highest
level1 at 20 hr, which, is prallel,, to thetime-

Environmental Health Perspectives * Volume 105, Number 7, July 1997 713



Articles - Yang et al.

course changes of LDH leakage (Fig. 1B).
In contrast, MDA concentration in the
control cells remained constantly at a low
level, which is consistent with the changes
of LDH leakage in the control cells (Fig.
2B). Based on the results from Figures 1B
and 2B, a close correlation between LDH
leakage and MDA formation in Cd-treated
MRC-5 cells was found with a correlation
coefficient (r) of 0.96 (see insert in Fig. 2B).

The inhibitory effects ofCAT and SOD
on LDH leakage and MDA formation.
Figure 3A shows the inhibitory effects of
CAT and SOD on Cd-induced cytotoxic
effects in MRC-5 cells. After a 16 hr incuba-
tion, the percentage of LDH leakage in the
groups with 1,000 U/ml CAT or 500 U/ml
SOD was significantly lower than the group
treated with CdCI2 (35 pM) only. A similar
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inhibitory effect was also observed in Cd-
induced lipid peroxidation. CAT or SOD
significantly reduced the MDA concentra-
tion in Cd-treated MRC-5 cells (Fig. 3B).

Cd-induced ROSformation and the
inhibitory effects ofCAT and SOD. In this
part of the study, intracellular ROS forma-
tion was estimated by the changes in DCF
fluorescence intensity. Figure 4A shows the
dose-dependent increase of DCF fluores-
cence in MRC-5 cells when incubated with
CdCl2 for 4 hr. The time-course changes in
ROS production in both the control and Cd-
treated MRC-5 cells are presented in Figure
4B. It was found that with 30 min of incuba-
tion, the fluorescence intensity in Cd-treated
cells was significantly higher than that of the
control cells. A nearly 100% increase was
noted in the Cd-treated cells compared to the
control cells with a 4-hr incubation.

The inhibitory effects of CAT and
SOD on ROS formation in Cd-treated
MRC-5 cells are shown in Figure 5. CAT
(1,000 U/ml) completely inhibited the
increase of Cd-induced ROS formation,
and the fluorescence intensities in the
groups of CAT pretreatment alone and
CAT-Cd co-treatment were even signifi-
cantly lower than that in the control cells.

In contrast, SOD failed to show any
inhibitory effects on Cd-induced ROS for-
mation in MRC-5 cells.

Cd-induced MMP changes in MRC-5
cells. Figure 6 shows the dose-dependent
changes of Rh-123 fluorescence intensity
quantified using a confocal microscope. In
addition, the fluorescence images of the con-
trol cells and cells treated with the highest
CdCl2 concentration (35 pM) are presented
in Figure 7. In the control cells, the Rh-123
fluorescence is located in areas around the
nucleus that correspond to the distribution
of mitochondria (Fig. 7A). After a 1-hr
exposure to CdCl2, Rh-123 fluorescence
intensity increased and appeared diffusely in
the cytoplasm, with poorly defined and
irregular cell morphology (Fig. 7B).

Discussion
Evidence has suggested that occupational
exposure to Cd causes serious lung damage
including emphysema (3,4). However, at
present, the mechanisms responsible for
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Figure 2. Cd-induced malondialdehyde (MDA) for-
mation in cultured MRC-5 cells as shown by (A)
dose response and (B) time-course. Data are
expressed as mean ± standard deviation (n = 5-6).
In the dose-response study, cells were incubated
with CdCI2 for 16 hr. In the time-course study, the
exposure concentration of CdCI2 was 35 pM. The
insert in B indicates the correlation between the
percentage of lactate dehydrogenase (LDH) leak-
age and MDA concentration (nmol/mg protein) in
Cd-treated MRC-5 cells, based on the data from
Figs. 1 B and 2B. y= 13.737 + 4.3705x, r= 0.96.
*p<0.05 compared to zero CdCI2 concentration
(ANOVA with Scheffe's test).
**p<0.01 compared to their respective control
groups (Student's t-test).
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Figure 3. The inhibitory effects of catalase (CAT) or
superoxide dismutase (SOD) on (A) lactate dehy-
drogenase (LDH) leakage and (B) malondialdehyde
(MDA) formation in Cd-treated MRC-5 cells. Data
are expressed as mean ± standard deviation (n =
5). Cells were treated with 35 pM CdCI2 for 16 hr
with or without catalase (1,000 U/ml) and SOD (500
U/mI).
*p<0.05 compared to the group treated with CdCI2
only (ANOVA with Scheffe's test).
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Figure 4. Elevated level of dichlorofluorescein
(DCF) fluorescence in Cd-treated MRC-5 cells as
shown by (A) dose response and (B) time-course.
The reaction took place with 0.6 x 105 cells and 2
pM 2',7'-dichlorofluorescin diacetate in 3 ml
PBS. Data are expressed as mean ± SD (n = 5-6).
In the dose-response study, cells were incubat-
ed with CdCI2 for 4 hr. In the time-course study,
the exposure concentration of CdCI2 was 35 pM.
*p<0.05 compared to 0 CdCI2 concentration
(ANOVA with Scheffe's test).
**p<0.01 compared to their respective control
groups (Student's t-test).
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Cd-induced pulmonary toxicity have not
been fully understood. In the present
study, the cytotoxic effects of Cd on a
human fetal lung fibroblast cell line
(MRC-5 cells) were evaluated by studying
Cd-induced lipid peroxidation, ROS pro-
duction, and MMP changes. The results
clearly indicate that Cd is able to cause
oxidative cellular damage in lung fibrob-
lasts, manifested by lipid peroxidation, ele-
vated level of ROS formation, and mito-
chondrial membrane damage, which even-
tually leads to irreversible cell injury.

Lipid peroxidation is one of the main
manifestations of oxidative damage and is
closely associated with the toxicity of many
heavy metals including Cd (10,11). Free
radical scavengers and antioxidants, such as
glutathione, vitamin E, vitamin C, butylat-
ed hydroxyanisole, butylated hydroxy-
toluene, and metallothionein, etc., are
capable of protecting against Cd toxicity
(6,19-21). However, most of these studies
used kidney/renal cells or testis/testicular
cells as experimental models. In the present
study, Cd-induced cytotoxicity and lipid
peroxidation were studied by measuring
LDH leakage and MDA production in
lung fibroblasts. Both time- and dose-
dependent changes of these two parameters
were noted in Cd-treated cells (Fig. 1, 2).
Moreover, a close correlation between these
two events was also found. Thus, lipid per-
oxidation may be one of the important
events responsible for pulmonary toxicity
of Cd. Manca et al. (7,22) investigated the
susceptibility of various organs (liver, kid-
ney, brain, lung, heart, and testis) of rats
administered Cd and found that lung and
brain had the greatest increases in lipid per-
oxidation. Similar findings, together with
the changes of lung antioxidant systems in
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Figure 5. Effects of catalase (CAT) and superoxide
dismutase (SOD) on reactive oxygen species pro-
duction in Cd-treated MRC-5 cells. CAT (1000
U/ml) and SOD (500 U/ml) were preincubated for 6
hr prior to the analysis. Data are expressed as
mean ± SD (n = 56).
*p<0.05 compared to the control group (ANOVA
with Scheffe's test).

Cd-instillated rat lungs, were also found by
Salovsky et al. (23).

In a series of studies of Cd-induced car-
cinogenesis, Koizumi et al. (8,9) found that
cellular production of H202 one of the
main components of ROS, was remarkably
enhanced in Cd-treated rat testicular
Leydig cells, the target cell population for
Cd carcinogenesis. However, so far there is
no experimental evidence showing the ele-
vated level of intracellular ROS production
in Cd-treated lung cells. In the present
study, Cd-induced ROS formation was
detected with a fluorescent probe, DCFH-
DA. The time- and dose-dependent
increases of DCF fluorescence intensity
(Fig. 4) clearly indicate the significant
increase of ROS production in Cd-treated
MRC-5 cells. Moreover, it was found that
a significant increase in ROS production
started as early as 0.5 hr after Cd treatment
and apparently preceded LDH leakage and
MDA formation, suggesting the causative
role of ROS production in initiation of
lipid peroxidation and other forms of
oxidative damage.

Significant changes of activities of CAT
and SOD, two important antioxidant
enzymes, have been noted in various tissues
or cells with Cd exposure, indicating the
involvement of these two enzymes in Cd
toxicity (10,23,24). In the present study,
the protective effects of CAT against Cd-
induced LDH leakage, lipid peroxidation,
and ROS formation (Fig. 3, 5) suggest that
H202 is one of the main ROS generated in
Cd-treated MRC-5 cells and is responsible
for the oxidative damage observed. On the
other hand, SOD inhibited Cd-induced
LDH leakage and lipid peroxidation (Fig.
3), but failed to reduce DCF fluorescence
formation in Cd-treated cells (Fig. 5).
Similar results were also found in some
other studies (17,25,26). Therefore, it
seems that superoxide radicals play an

important role in Cd-induced oxidative
damage, although they are not directly
involved in DCFH oxidation. As exoge-
nous CAT and SOD are unable to pass the
cell membrane freely, it has been suggested
that CAT or SOD is able to enter cells
through endocytosis, which is a relatively
slow process (27,28). In the present study,
CAT and SOD were either incubated
together with Cd throughout the study (for
the LDH and MDA tests) or preincubated
for 6 hr before Cd treatment (for the DCF
fluorescence test). It is thus believed that a
significant amount of CAT or SOD
entered MRC-5 cells to exert their protec-
tive effects.

Rh-123 is the most commonly used flu-
orescent probe for detecting MMP changes.
It is believed that when Rh-123 accumu-
lates electrophoretically in the mitochondri-
al matrix, its fluorescence is quenched due
to stacking, aggregation, changes in polarity
or ionization, and so forth (13). Therefore,
the dose-dependent increase of Rh-123 fluo-
rescence in Cd-treated MRC-5 cells (Fig. 6)
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Figure 6. The dose-dependent increase of Rh-123
fluorescence in Cd-treated MRC-5 cells. Data are
expressed as mean ± standard deviation (n = 3).
*p<0.05 compared to the control group (zero CdCI2
concentration) (ANOVA with Scheffe's test).

Figure 7. Images of MRC-5 cells showing mito-
chondrial membrane potential changes by the
increase of Rh-123 fluorescence level in (A) con-
trol cells and (B) cells treated with 35 pM CdCI2
for 1 hr.
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indicates the decrease ofMMP, resulting in
the release of the probe from mitochondrial
matrix into cytoplasm. The close relation-
ship between MMP changes, lipid peroxi-
dation, and cell injury has been found in
liver and renal cells (12,13,29). In the pre-
sent study, significant MMP changes in
lung fibroblasts were observed with 1 hr Cd
treatment. Thus, it seems that MMP
changes occur well before MDA formation
and LDH leakage. There are two possible
consequences of mitochondrial damage:
ATP depletion and further enhancement of
intracellular ROS production, both of
which could contribute to Cd-induced lipid
peroxidation and irreversible cell injury.
Nevertheless, the exact role of mitochondri-
al damage in Cd toxicity has yet to be inves-
tigated further.

In summary, the present study demon-
strates the ability of Cd in inducing oxida-
tive cellular damage in cultured human
fetal lung fibroblasts (MRC-5 cells). The
results show that Cd exposure enhances
intracellular ROS production, causes
changes of MMP, and increases lipid per-
oxidation, which eventually leads to cell
damage and death. It is thus believed that
Cd-induced oxidative cellular damage plays
an important role in Cd-induced pul-
monary toxicity.
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